Chapter 2 The Linear Least Squares Problem
2.0 contents
2.1 The Normal Equations2.2 The Geometry of Least Squares2.3 Reparameterization2.4 Gram-Schmidt Orthonormalization2.5 Summary of Important Results
2.1 The Normal Equations
One mathematical view of the linear model \(y = Xb + e\) is the best approximation \(Xb\) to the observed vector y.
Euclidean 방법으로 근사치를 구한다면 \[Q(b)= (y-Xb)^T(y-Xb) = \|y-Xb\|^2\] 를 최소화하는 \(b\) 를 \(Q(b)\) 의 least squares solution이라 한다.
Euclidean 방법으로 근사치를 구한다면 \[Q(b)= (y-Xb)^T(y-Xb) = \|y-Xb\|^2\] 를 최소화하는 \(b\) 를 \(Q(b)\) 의 least squares solution이라 한다.
2.2 The Geometry of Least Squares
2.3 Reparameterization
2.4 Gram-Schmidt Orthonormalization
2.5 Summary of Important Results
No comments:
Post a Comment